I. i) 線形計画法:資源の制約条件

 $5x + 2y \leq 2$ $x + 4y \leq 3$

 $2x + 5y \leq 1$

のもとで

Z = 26x + 24y

を最大化しなさい。

- ii) 各資源制約のシャドウ価格を求めなさい。
- iii) この問題の双対問題を書きなさい。また、適切な応用問題を自ら見い出しなさい。
- II. 消費者の 3 財 A, B, C の効用関数は、それぞれの財の量を x, y, z として、

U(x, y, z) = xyz

とする。A,B,C の価格はそれぞれ 3,4,6 とし、予算は 420 とする。このとき消費者の最適消費量を求めなさい。またシャドウ価格 (ラグランジュ乗数) を求めなさい。

- III. 下表の5部門からなる経済の投入産出表(単位=1000億円)において
 - i) 各部門で生産された付加価値、およびその和を求めなさい。
 - ii) 投入係数行列を求めなさい。
 - iii) レオンチェフ逆行列を求めなさい。
 - iv) 各部門ごとに、その生産物に対する最終需要が 1 単位 (1000 億) だけ増加するとき、その増加が全部門 (その部門および他部門) にもたらす生産量増加の和を求め、どの部門でこの和 (5 通り) が大きいか比で比較しなさい。平均で割り、平均 = 1 とすること。
 - m v) 全部門において同時にその生産物に対する最終需要が 1 単位 (1000 億) だけ増加すると考えよう。これが各部門にもたらす生産量増加を各部門ごとに求めなさい。これらの大きさを比で比較しなさい。平均で割り、平均 =1 となるようにしておくこと。
 - vi) iv), v) を表、グラフに示し、各部門の産業としての性格を述べなさい。
 - 注) iv), v) をそれぞれ、「影響力係数」「感応度係数」という。

	部門1	部門 2	部門 3	部門 4	部門 5	最終
 部門 1	20	75	0	19	0	86
部門 2	0	0	56	0	0	94
部門 3	0	0	56	0	48	176
部門4	0	30	0	19	0	141
部門 5	20	0	28	0	0	192

- IV. 工場のクリーニング屋に対する汚染被害のケースにおいて、
 - x =クリーニング屋の工場からの受取額
 - y = 工場のクリーニング屋への支払額
 - d = 直接交渉費用の個々の負担分(折半)

とする (x = yである)。

- i) d=0 のとき、(x,y) の可能な範囲をグラフに示し、コースの定理を説明しなさい。
- ii) d>0 のときでも、コースの定理は成立するか。
- [注意] 前回分も入ります。質問は ML で答えます。